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Exercice 1 (réf 82)

Lors d’'une manceuvre de mise en orbite autour de la Terre de deux satellites identiques
de masse m, les astronautes d’une navette spatiale de transport commettent une erreur
qui a pour conséquence désastreuse de mettre ces deux satellites simultanément sur une
méme orbite circulaire de rayon 15 > R (R étant le rayon de la Terre) mais dans des
directions opposées (voir la figure).

1. Quelle est la norme, v, de la vitesse de chacun de ces satellites sur leur orbite
commune ?

2. A compter de linstant de leur mise en orbite circulaire & partir du méme point A,
apres combien de temps entrent-ils en collision 7 En quel point B de l'orbite cette
collision a-t-elle lieu ? Indiquez ce point sur la figure.

3. Lors de la collision, les deux satellites restent encastrés I'un dans I'autre. Quelle est
alors leur vitesse commune apres la collision 7 Quelle est I’énergie dissipée lors de cette
collision ?

4. Apres cette collision, les deux satellites tombent vers la surface de la Terre. En
négligeant le frottement de 'atmosphere, quelle sera la norme, v, de leur vitesse au
moment de leur choc avec le sol ?

5. Toujours en négligeant le frottement de 'atmosphere, quel intervalle de temps s’écoule-
t-il entre la collision des deux satellites sur leur orbite et leur choc avec le sol 7

Remarques :
i) Les résultats sont & exprimer en termes de 1y, g, R et m.
1

ii) Un changement de variable utile pour évaluer I'intégrale [ dr (% - %0) ? est

r =15C08% X J— )

Solution

Exercice 2 (réf 83)

Dans I’environnement spatial proche d'un corps céleste de masse M, de rayon R et qui
possede une distribution de masse a symétrie sphérique, on observe I'approche d’un autre
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corps céleste assimilé a un point matériel et de masse inconnue m, << M. Par rapport au
corps de masse M, la trajectoire de celui de masse m, est parabolique, avec une distance
minimale au périgée mesurée comme étant ry > R. Pour commodité ultérieure, la

. ’GM . . . . . . o
combinaison —qui possede la dimension physique d’une vitesse est dénotée par vy,
0

. GM
soit vy = o
0

Afin de mesurer m, en piégeant cet objet, on place en orbite autour du corps de masse
M et sur une trajectoire circulaire de rayon 1y un troisieme corps assimilé a un point
matériel et de masse connue m; < m, < M. Cette trajectoire circulaire se situe dans le
méme plan que celui de la trajectoire parabolique de m,. Tandis que la mise en orbite de
m, est synchronisée de maniere telle que m; rentre en collision avec m, au moment
méme lorsque m, atteint son périgée, chacun de ces corps se déplagant a cet instant dans
des directions opposées (voir la figure ci-dessous). Suite a cette collision frontale les deux
corps restent encastrés, pour alors nécessairement suivre une trajectoire elliptique dont
le lieu de collision est soit le périgée, soit 'apogée. En observant ensuite la distance de
I’autre point extréme de cette trajectoire, il devient ainsi possible de déterminer la valeur
du rapport A = Z—i, soit donc celle de la masse m,. Dans l'analyse de ce systeme,
I’attraction gravitationnelle entre les deux corps de masses m; et m, est négligée en
comparaison de leurs interactions individuelles avec le corps de masse M . La constante
universelle de la gravitation de Newton est dénotée G.

1. Déterminez la norme, vy, exprimée en termes de v,, de la
vitesse du corps de masse m; sur son orbite circulaire de rayon
Ty- Evaluez son énergie mécanique totale, E;, ainsi que la
période, T;, de son mouvement.

2. Déterminez la norme, v,, exprimée en termes de v,, de la
vitesse du corps de masse m, sur son orbite parabolique a
I'instant d’atteindre son périgée, juste avant que la collision

n’ait lieu.

3. Déterminer la norme, V, et la direction de la vitesse des deux

corps encastrés juste a 'instant qui suit leur collision frontale. e m,

Exprimez la valeur de V en terme du rapport A = Z—i Et par

relation inverse identifiez ’expression de la valeur du rapport des masses, 1, en terme

%4
de —.
Vo

4. Déterminez les périgée et apogée de la trajectoire elliptique suivie par les deux corps

, . , . 4 L v
désormais encastrés en fonction de ry et - En déduire la valeur de — en terme des
0 0

distances a 'apogée et au périgée.
, . m2 . . N
5. En déduire la valeur du rapport des masses, 4 = — en fonction des distances a

I’apogée et au périgée.



Gravitation et lois de Kepler Ceinture Noire

Solution

Exercice 3 (réf 84 )

Deux satellites identiques de masses m; et m,, avec m; = m = m, sont en orbite autour
d’une planete de masse M et dont la distribution de masse est a symétrie sphérique. A
un instant donné, la configuration du systeme est telle qu’illustrée dans la figure. Le
satellite de masse m, est alors a une distance ry = 1y du centre de la planete, et possede

. . R . 1 ,GM 1 ,
une vitesse perpendiculaire a cette position et de norme v; = S| =3% (G étant la
0
constante de Newton). Le satellite de masse m, est alors en une position diamétralement
s s . 25
opposée a celle de m; par rapport au centre de la planéte, a une distance r, = —To de
cette derniere, et avec une vitesse perpendiculaire a sa position relative a la planete, de

7 [em 7 N . .
norme v, =— [— =—1,, et de sens opposé a celle du satellite de masse m; (voir la
2720410 2070 1

figure). Le plan du mouvement des deux satellites est identique. L’attraction
gravitationnelle entre les deux satellites est négligée en comparaison de celle avec la
planete.

On rappelle que pour le probleme de Kepler gravitationnel de masses m et M |, la période

3
T d’une trajectoire elliptique de demi-grand axe a est donnée par T = 2m / ,ua— s u

GmM

étant la masse réduite associée.

1. Quelle est la nature géométrique de l'orbite de m; 7 Justifiez avec précision.

2. Déterminez les distances 11 4+ et les normes v, des vitesses de m; en ses apogée
(14,01 4) et périgée (ry_ , v, _) ainsi que la période T; de ce mouvement.

3. Quelle est la nature géométrique de 'orbite de m,? Justifiez avec précision.

4. Déterminez les distances r, . et les normes v, des vitesses de m, en ses apogée et
périgée ainsi que la période T, de ce mouvement.

5. Sur base de ces résultats, et de la valeur du rapport ?, expliquez avec précision
1

pourquoi et en quel lieu les deux satellites rentrent-ils en collision.

6. Suite a leur collision, les deux satellites restent encastrés I'un dans I'autre. Quelle est
la norme V de leur vitesse commune a 'instant qui suit cette collision ? Quelle est la
nature géométrique de la trajectoire qu’ils suivent alors ? Justifiez avec précision.

U

m Ty M 15} 1
2 & 4

[ "

Solution
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Exercice 4 (réf 85)

Afin de gagner vos galons de pilote intersidéral, vous devez réussir une derniére épreuve
avec votre vaisseau spatial de masse m, dans une manceuvre audacieuse au voisinage
d’un corps céleste d'un genre tout particulier, et isolé dans 1'Univers (donc seule son
attraction gravitationnelle importe). Ce corps sphérique, de masse totale M > m et de
rayon R, possede une distribution homogene de masse.

Cependant, il est traversé, suivant un de ses diametres, d’un tunnel rectiligne juste assez
large pour laisser passer votre vaisseau, ce tunnel étant aligné par ailleurs avec 'axe de
rotation du corps sur lui-méme (voir la figure).

L’objet de la manceuvre consiste a se placer, immobile, en un point A a la verticale de
I’entrée B de ce tunnel BC, & une distance 1, = 2R du centre du corps céleste, et ensuite
a se laisser tomber, tous moteurs éteints, au travers du tunnel, pour atteindre le point D
diamétralement opposé avec une vitesse nulle a nouveau.

Ensuite, en ce point D, il s’agit d’allumer trés brievement les moteurs afin de
communiquer instantanément a votre vaisseau une vitesse de norme v dans une direction
perpendiculaire a AD. Les moteurs étant coupés aussitot, la valeur de v doit étre choisie
telle que la trajectoire alors suivie par votre vaisseau (maintenant libre a nouveau)
I’amene de retour en I'entrée B du tunnel mais cette fois tangentiellement a la surface
du corps céleste et sans vous écraser sur celui-ci. Comme preuve de votre exploit, il vous
faut ramener, cueillie au passage, une de ces mystérieusement belles fleurs de Lune

poussant aux entrées de ce tunnel ...

1. Que vaut la norme F de la force de poussée des
moteurs qui maintient votre vaisseau immobile en
A7

2. Afin que votre manceuvre réussisse, a quelle valeur

2R

la norme v doit-elle étre ajustée 7 Comment cette
valeur se compare-t-elle avec celle de la norme v, de
la vitesse de votre vaisseau s’il suivait une trajectoire

circulaire de rayon ry = 2R 7

3. Quelle est alors la norme v’ de la vitesse de votre
vaisseau frolant la surface du corps au point B ?

4. Lors de la chute ABCD, quelle est la norme vg de la vitesse de votre vaisseau aux
points B et C du tunnel ?

5. Expliquez pourquoi une fois dans le tunnel, le mouvement est harmonique avec la

, . ,GM , . )
fréquence angulaire w = e Déterminez le temps Atg. de traversée du tunnel.
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6. Montrez pourquoi le temps de chute At du point A a 'entrée B du tunnel est donnée
par I'expression

dr

26M (3~ 77)

2R
AtAB :f
"

7. A laide du changement de variable r = 2Rsin?u pour I’ “evaluation de cette
intégrale, déterminez la valeur At,, du temps de chute total de A a D.

Solution

Exercice 5 (réf 86 )

Un objet ponctuel de masse m, = mv2 est placé sur une orbite circulaire

, , c . N my
de rayon 1y autour d’un corps céleste étendu de distribution de masse a

symétrie sphérique, de masse totale M et de rayon R < 1y. Un autre g
objet ponctuel de masse m; = m est placé sur une orbite parabolique ’
autour de ce méme corps de masse M , avec un périgée de distance
1y également par rapport au centre du corps de masse M. Les
mouvements de rotation de ces deux objets ponctuels se font dans
le méme plan, mais dans des directions opposées cependant (voir la
figure). Par un heureux ou malheureux concours de circonstances,
I'objet de masse m; atteint son périgée, situé sur 'orbite de 1'objet de masse m,, au
méme instant que ce dernier atteint également ce point de son orbite ; il y a donc collision
et les deux objets restent encastrés I'un dans l'autre.

1. Quelle est la norme, v;, de la vitesse de I'objet de masse m; en son périgée a la distance
1y du centre du corps de masse M 7

2. Quelle est la norme, v,, de la vitesse de 'objet de masse m, sur son orbite circulaire
de rayon 1y 7

3. Quelle est la période, T,, du mouvement circulaire de 1'objet de masse m, 7

4. A Tinstant qui suit la collision des deux objets, quelle est la norme, V , de leur vitesse
désormais commune ?

5. Quelle est I’énergie dissipée, AE, lors de cette collision 7

6. Apres cette collision, les deux objets tombent vers la surface du corps de masse M. En
ignorant I’éventuel frottement de 'atmosphere, quelle sera la norme, V,, de leur
vitesse au moment de leur choc avec la surface du corps de masse M 7

7. Toujours en négligeant ’éventuel frottement de I'atmosphere, quel intervalle de temps,
At, s’écoule-t-il entre la collision des deux objets et leur choc avec la surface du corps

de masse M ?
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Remarques :
i) Les résultats sont a exprimer en terme de 15, G, M, R et m.

ii) Il est évidemment supposé que M > my, m,.
1

iii) Un changement de variable utile pour évaluer lintégrale [ dr E—%]] * est
0

T =1715c0s%x

Solution

Exercice 6 (réf 128 )

Une tres grande plaque plate, d’épaisseur 7, de

densité uniforme p occupe le plan xy. Une x
masse ponctuelle (mg) est située a une distance
Zo sur Paxe des z. Ecrire une expression de
I'intégrale qui exprime la force gravitationnelle
sur moy due a son interaction avec la plaque.

Faites le calcul en coordonnées cartésiennes

en supposant que zo » T. Ne calculez pas

P’intégrale.

Solution

Exercice 7 (réf 129)

Une tres grande plaque plate circulaire,
d’épaisseur 7, de densité uniforme p occupe le
plan xy. Une masse ponctuelle (mg) est située
a une distance zy sur 'axe des z. Ecrire une
expression de l'intégrale qui exprime la force

gravitationnelle sur mgy due a son interaction

avec la plaque. Faites le calcul en coordonnées
polaires en supposant que zo > T.
Que devient cette force F, si R > z, 7

Solution
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Exercice 8 (réf 130)

On veut tirer un projectile (de masse m) verticalement de la surface d’une planete de
masse M et de rayon R.
a) Montrez que la vitesse minimum, avec laquelle le projectile doit étre lancé pour

atteindre un point situé a une distance r du centre de la planete, est donnée par :
2o (1Y)
v = —_——
R r

[Suggestion : utilisez a = vdv/dr et le fait que g(r) = GT—I:I Prenez la verticale vers le

haut comme sens positif].

b) Déterminer la vitesse minimum avec laquelle on doit lancer un projectile non
propulsé, de la surface de la Terre, pour qu’il puisse échapper completement au
champ gravitationnel de la planéte. C’est ce qu’on appelle la vitesse de libération.
[Suggestion : il faut qu’a Uinfini, la vitesse du projectile soit nulle].

Solution

Exercice 9 (réf 131)

Considérons une planéte, de masse M et rayon R, et un petit objet, de masse m, tombant
sur elle d’une distance ro. Etablir une expression de la vitesse de 'objet en fonction de

sa distance r au centre de la planete, sachant que pour r =1y, v = 0. Si la planete est
GMT
RZ’

la Terre, dont I'accélération de la pesanteur a la surface est go, donnée par gy, =

montrer que la vitesse avec laquelle m frappe la surface est v = /2 Rr gy, si 1 est tres
grand. [Suggestion : utiliser I'équation vdt = dr pour obtenir vdv au premier membre et

dr
— au second membre].

Solution

Exercice 10 (réf 132)

Une tige mince, de longueur L et de masse m, est placée le long de 'axe des x positifs,
de fagon que son extrémité la plus proche de I'origine soit d’abscisse xo. Trouver la force
gravitationnelle qu’elle exerce sur une masse ponctuelle M, qui se trouve a l'origine.
Est-ce que l'interaction serait la méme si toute la masse de la tige était concentrée en
son centre ? Que devient 'interaction si xo > L 7 [Suggestion : partager la tige en petits
segments assimilables a des masses ponctuelles dm].
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Solution

Exercice 11 (réf 133)

Déterminez le taux de variation de gr avec la distance, pres de la surface de la Terre.
Calculez la valeur numérique de cette quantité en metres par seconde au carré par metre.
Gardez trois chiffres significatifs.
On donne :

e Masse de la Terre My = 5,975 X 10%* kg

e Rayon moyen de la Terre Ry = 6,371 23 X 10°m

m2
e G=667259x10" 11 N
kg

Solution

Exercice 12 (réf 134)

Un anneau métallique mince de centre O, de rayon R et de masse m, se trouve dans le
plan yz. Une masse ponctuelle My est située sur son axe Ox a ’abscisse xo. Déterminer
la force gravitationnelle exercée par l'anneau sur la masse My. Est-ce que I'anneau se
comporte comme si toute sa masse était concentrée en son centre 7 Que devient
I'interaction si xo > R 7 [Suggestion : commencer par trouver la force due & un petit
secteur, c’est-a-dire un élément différentiel, dm, de 'anneau.

Solution

Exercice 13 (réf 135 )

a) Ecrire Dexpression de la force gravitationnelle exercée par un nuage sphérique
uniforme de masse M et rayon R sur une petite masse m a l'intérieur du nuage. On
suppose la particule a une distance r < R.

b) Quelle est l'intensité du champ gravitationnel & l'intérieur d’une sphere pleine et
uniforme de masse M et de rayon R, a une distance R/2 du centre ?

Solution
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Exercice 14 (réf 136)

Deux boules de cristal de 2,0 kg sont distantes de 1,0 m. Déterminer

T 0 2.0ke

le module et la direction de la force gravitationnelle qu’elles exercent g e

'J’ Q 2,0kg

sur une bille de 10 g située a égale distance de ces boules et a 0,25 m
de la droite qui joint leurs centres.

Solution

Exercice 15 (réf 137 )

Une étoile a neutrons peut étre imaginée comme un noyau immense soudé par sa propre
gravitation. Quelle est la période de rotation de cette étoile au-dessus de laquelle elle
éjecte de la matiere équatoriale ? Prendre p = 107 kg/m?3. 1l est largement admis que
les pulsars, étranges émetteurs célestes de rayonnements pulsés, sont des étoiles a
neutrons en rotation rapide.

Solution

Exercice 16 (réf 138 )
Tracez le graphique représentant la variation du poids d’un objet de masse m en fonction
de laltitude h au-dessus de la surface de la Terre jusqu’a environ 700 km. Que

pouvez-vous dire de cette courbe (tant que R > h) ?

Solution

Exercice 17 (réf 139)

Soit M la masse d'une planete sphérique, homogene et de rayon R. Montrer que
I'accélération gravitationnelle absolue g, varie avec la hauteur h au-dessus de la surface
de la planéte suivant I’expression :

GM hy ™2
gfﬁ(”ﬁ)
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Cette expression peut étre approximée, en utilisant le développement du binéme:

1
(a+x)"=a"+na" 'x+ Snn— Da* % x4+ -

N . h . .. .
onx?<a? Ici,a=1,x= i —2.Si h K R. En vous limitant aux deux premiers

termes,

a) Montrez que :
GM 2h
9r = F( B 7)

Notez que GM /R? est précisément la valeur de g, sur la surface (h = 0)

b)  Calculer I'accélération de la pesanteur a 10 000 m au-dessus de la surface de la
Terre de deux fagons :

(1) en utilisant go = G:QT et
T

(2) en utilisant 'approximation trouvée en a). Comparer les deux résultats.

¢) Déterminer 'accélération gravitationnelle subie par le Module Lunaire quand il était
a 100 m au-dessus de la surface de la Lune. Est-elle sensiblement différente de sa
valeur sur la surface de la Lune ?

On donne :
e Masse de la Terre My = 5,975 X 10%* kg
e Rayon moyen de la Terre Ry = 6,371 23 X 10°m

m2
e G=667259x10""N—
kg

e Masse de la Lune: 7,35 X 1022 kg
e Rayon moyen de la Lune R, = 1,74 X 10 m

Solution

Exercice 18 (réf 140)

Attention : nécessite une bonne connaissance de trigonométrie et une bonne pratique
du calcul intégral avec des fonctions trigonométriques ou ... une table d’intégrales sous la

main & |
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La figure ci-contre représente un disque concave mince
de densité p, dont I'épaisseur T augmente linéairement
vers la périphérie a partir d’'un trou minuscule au centre,
de fagon que T = Kr, ou K est une constante.

a) Déterminez la force gravitationnelle agissant sur une
masse ponctuelle (M) située a une distance xqo sur
l'axe. (a) Il vous suffit d’utiliser une intégrale
familiere et que vous pouvez trouver dans les tables

d’intégrales. Vous trouverez :

R+ /R% + x2 R )

F, = 2nKpMG x, <ln -

X VR? +x3

[Suggestion : partagez le disque en anneaux concentriques, chacun ayant une masse dm.
Ecrivez la loi de gravitation universelle en termes de L (la distance de anneau & M), dm
et @ pour chaque anneau puis intégrez sur le disque.]

b) Vérifiez les unités de I’équation trouvée.

Solution

Exercice 19 (réf 141 )

Une longue tige mince, de masse M et de longueur L est placée le long de I'axe des y avec
son centre a l’origine.

(a) Trouver la force gravitationnelle qu’elle exerce sur une masse ponctuelle (mg) située
sur I'axe des x, a une distance xq.

(b) En supposant constante la masse par unité de longueur (masse linéique) A, de la
tige, trouver la valeur de la force lorsque L tend vers I'infini.

Solution

Exercice 20 (réf 142 )

Les étoiles binaires Sirius A et Sirius B décrivent des orbites, autour de leur barycentre,
avec une période de 50 ans. Leur distance est de 20,0 UA (ou 2,99 X 1012 m). L’étoile la
moins brillante, Sirius B, est deux fois plus éloignée du barycentre que Sirius A. Calculer
leurs masses
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Solution

Exercice 21 (réf 143)
On voudrait placer un satellite artificiel de la Terre en orbite circulaire a mi-distance
Terre-Lune. Calculer sa période et la vitesse orbitale nécessaire.

e On donne la distance Terre-Lune : 7, = 3,844 X 108m

Solution

Exercice 22 (réf 144 )

Deux corps, de méme masse m, sont situés sur 'axe des y a une distance d au-dessus
et au-dessous de l'origine. Montrer que 'intensité du champ gravitationnel en tout
point P de 'axe des x, situé a une distance x de l'origine, est donnée par :

2Gmx

g=—"-7
(x2 + d2)2

1
Noter que la distance du point P aux corps est r = (x? + d?)z.

Solution

Exercice 23 (réf )

Solution

Exercice 24 (réf )

Solution
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Exercice 25 (réf )

Solution

Exercice 26 (réf )

Solution

Exercice 27 (réf )

Solution

Exercice 28 (réf )

Solution

Exercice 29 (ref )

Solution

Exercice 30 (ref )

Ceinture Noire
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Solution

Exercice 31 (réf )

Solution

Exercice 32 (réf )

Solution

Exercice 33 (réf )

Solution

Exercice 34 (réf)

Solution

Exercice 35 (réf )

Solution

Ceinture Noire
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Exercice 36 (réf )

Solution

Exercice 37 (réf )

Solution

Exercice 38 (réf )

Solution

Exercice 39 (réf )

Solution

Exercice 40 (réf )

Solution

Exercice 41 (réf )

Solution

Exercice 42 (réf )

Ceinture Noire
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Solution

Exercice 43 (réf )

Solution
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Gravitation et Lois de Kepler

Solution 1 (réf 82)

1. Dans le cadre du MCU, chacun des satellites va subir une accélération centripete
2
(2°m Joi de Newton) dirigée vers le centre de la Terre : F = ma = m;v . Or, dans le repere
0
de Frenet, cette force n’est autre que la force de gravitation dirigée également vers le
centre de la Terre F = Gl:lzm. Donc :
0
muv? Mm , GM
F = =G— >v'=—o (D
ro T'O ro

Mais I’énoncé précise bien « les résultats sont a exprimer en termes de 1y, g, R et m »,
ce qui n’est pas le cas dans cette réponse !
On va donc se ramener au niveau du sol (r = R, la ou l'accélération vaut g). Au niveau

du sol terrestre, on a F = mg = Gl\;i—rzn = GM = gR? de sorte que (1) devient :
2 2
vZ = G—M = —gR = g—R
To To To
2. Chacun des 2 satellites orbitant a la méme vitesse mais en sens opposé, il est

évident que la collision aura lieu en B, point diamétralement opposé a A. Le temps

mis par chacun des satellites pour arriver en B est bien stir d'une demi-période.

Calculons la période :

X Mcu 27T, 2nry  2mry To e
v=— = >T= = =211y |—57 =27 | =053
t T v gR? gR gR
To

Or, le temps At; recherché correspond a une demi-période, soit :

o
Aty =1 [—
3. a) Au point A (au moment de se séparer), chacun des satellites a une quantité de

mouvement mv mais dans des directions opposées, la quantité de mouvement totale du
systeme est donc nulle ! Pendant leur périple jusqu’au point B, aucune nouvelle force
n’est retiré ni ajoutée et donc aucune différence de quantité de mouvement non plus !
Des lors, lors de la collision, la quantité de mouvement initiale (nulle) est conservée et
est donc nulle également au moment ou ils s’encastrent. Apres collision, le systeme a

donc une vitesse nulle !

b) Entre le point A et le point B, I’énergie potentielle ne varie pas, vu que celle-
ci ne dépend que du rayon de l'orbite, celui-ci ne changeant a aucun moment. Il n'y a
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donc pas de variation d’énergie potentielle suite a la collision. Reste alors 1'énergie
cinétique !

Avant la collision, 1’énergie cinétique du systeme vaut celle du satellite 1 + celle du
mv?

2
satellite 2, soit + mTV = mv?2. Apres la collision, la vitesse de chaque satellite étant

nulle, I’énergie cinétique du systéme est nulle également.
2 question 2 gR2
Au final, AEg, = Ecing, — Ecin,,; = 0 — mv® = —mv =

Le signe « moins » exprime cette dissipation d’énergie due a la collision.

4. On va utiliser le grand principe de la conservation de 1'énergie en calculant
I’énergie totale au moment de la collision et, vu sa conservation, I’égaler a I’énergie totale
au moment de toucher le sol ! Aussi, dés que la collision a eu lieu, la seule et unique force
qui sera en jeu est la force gravitationnelle qui va faire chuter tout le systeme vers la

Terre.

Une fois la collision faite, la masse du systeme vaut 2m et son énergie potentielle vaut
2m R? , . , e e

Ep—coltision = —GM - ke —2m gr—o. De plus, on a calculé ci-dessus que 1’énergie cinétique

juste apres la collision, est nulle (elle s’est dissipée). Donc, 'énergie TOTALE, qui
d’ailleurs sera conservée tout au long de la chute vaut :

gR? gR?
Etor = Ecin + Epot = 0 —2m——= -2m—
Io Io
Au moment de toucher le sol a la vitesse recherchée, notée vy, on a :
2mv? 2
* Ecinsol = T v
gR?
* Epot, = —ZmY = —2mgR
2
* Ertor = Ecing,, T Epoty, = mv? — 2mgR = —Zm% (car Eg est conservée)
0
D'ou :
5 gR? X 2gR? R
mv; — 2mgR = —2m— = vi = 2gR — = 2gR <1 - —)
To To )

5. De la question (4), on sait que a tout moment pendant la chute 1’énergie totale
2
vaut Eior = —2m&
ro

Or, a tout moment de la chute :

2mv2(t) dr 2
i Ecin(t) = % = mv? (t) =m (d_Z)

2
o Ept(® = —Zm%

On peut donc écrire qu’a tout moment de la chute :
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dry? gR? gR?
Etot = Ecin(D) + Epot(t) < m (a) m m

dr\? gR?  gR? 1 1
) =27 -22—=2¢R (-—-)
< (dt) r o gR

Piege ! 11 est évident que lorsque le temps t s’écoule, r(t) diminue (suite a la chute) et

dr , , . N
donc — est forcément négatif. Donc, en passant a la

dt
veiller a considérer que la partie droite de ’équation sera négative, donc :
dr 1 1 dr
0 2(2_ =
S (-5

D’ou :

o= [fa=- " SR L
2" \/2 R2 l - Zng To (l_l)
r T

Heureusement ... 'énoncé nous aide en conseillant une substitution : r = ry cos? x.
Dans ce cas : dr = —2r, cos(x) sin(x) dx
Et aussi, quand

® r=ry; ry=rycos?(x) = x=arccos(1) =

e r=R; R=rycos?(x) = x=

1 j-R B 21, f cos(x) sin(x) dx
V2gR? Jr, J(l -1y V2R \/(; _ 1)
r T Iy cos?x Iy
Jar“"s\rg cos(x) sin(x) dx farccos\r cos(x) sin(x) dx
\/W ( 1 cos?x ) \/ZgR <1 — cos?x )
IoCOSZX I COS2 Iy cos? X

_ ALK \/_ jarccos cos(x) sin(x) dx 2r1g - \/—farccos cos(x) sin(x) dx
J2gR? (st(x)) /2gR? sin(x)

cos? x cos(x)

2 Io - \/— arccosJ:0 ,
\/ﬁ f cos“(x) dx
Or, cos(2x) = cos?(x) — sin?(x) = cos?(x) — (1 — cos?(x)) = 2 cos?(x) — 1

= cos’x = > + Ecos(Zx)
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2 arccos —0 2 arccos
o \/_f \Fcosz(x)dx— fo” \/_J \Fl

—+ cos(2x) dx
\ 2gR? ZgR2

R

21, - /ro 1 arccos\/% 11 arccos\/%

ZW [EX +E'E[SIHZX]O
g

R _ R
= —arccos |—+—sin2 | arccos |—

/ ZgRZ 2 Iy 4 Iy

r3 R 1 R
= arccos [—+ —=sin2 | arccos |—

/2 gRZ rg 2 o

l.3
0 R 1. R
arccos |[—+ —sin2 | arccos |—

[2 gR? rgp 2 )

On note au passage que si ro = R, At, = 0, ce qui est normal et ... réconfortant apres ce

= At2=

calcul !
Si vous aimez la trigonométrie, vous pouvez aller un cran plus loin, sachant que :

e sin2x = 2sinxcosx et aussi,

e sin(arcos x) = V1 —x?2

Alors :sin 2 (arccos \/E) = 2sin ( arccos F) cos (arccos \/7 \/7 / - —
T T I'o I'o
D'ou :
arccos |— + - —
ZgR

At, =

Retour a 'énoncé

Solution 2 (réf 83)

1. Dans le cadre du MCU, le corps de masse m; subit une accélération centripete (2

2
. « e s mv N
loi de Newton) dirigée vers le centre de la Terre : F = mja = — , dans le repéere

To
de Frenet, cette force n’est autre que la force de gravitation dirigée également vers le

GMm
centre de la Terre F = =——=. Donc :
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L’énergie mécanique totale n’est autre que Etrgr = Ecin + Epot

~E _ myvi  GMmy _my GM GMm1 _1GMm; 1 2 _ o
ToT ™ ) I 2 1y o 2 1, Zmlvo

Le signe « moins » est normal, il indique bien que la trajectoire du corps de masse m,
est ‘liée’ & astre attracteur (la Terre) donc, elliptique.
Calculons la période :

o = X mcu 27y o Zm‘o 2nry 2y ro
7y Tt GM 0\] GM
To

2. L’énoncé précise bien que la trajectoire du corps de masse m, est parabolique. Le

cours théorique nous indique donc que son énergie totale est nulle ! (Pour rappel :

Eiot < 0 pour une trajectoire elliptique, E;,; = 0 pour une trajectoire parabolique,
E_tot > 0 pour une trajectoire hyperbolique).
Or I'énergie totale du corps de masse m, vaut Ergr = Ecin + Epot

m,v3 GMm, 2GM 2GM

= Eror = - =0 evj= S vy =

2 4] o 4]

=2 v,

3. Choisissons la direction du corps 2 comme étant la direction positive.
La quantité de mouvement avant et apres la collision est conservée, on a alors :
mzvz - mlvl CIZ mz\/ivo - m1v0

—m4yv; + myvUy, = (ml + mz)V esV=

m (my+my)  (my +my)

2

mzx/_ m1 _1\/5_117 _A\/f— »

T+ my) | myy 07 142 O
vhma) (1472

N msy ;e s 4 ,
Ou A = — comme précisé dans 1’énoncé.

mq
W2-1

On adonc V =—7—
1+

Vo 2 V+VA— 2205+ v, =0 :>/1(V \/_vo)——(vO+V)
V
vo+V 1+v_0

\/EUO_V_\/E_l
Vo

> A=

De cette maniere, on a ramené A qui est au départ un rapport de masse, & un rapport
de vitesse, avant et apres collision. Ainsi (question suivante), connaissant ou calculant
le rapport des vitesses par d’autres moyens, nous pourrons en conclure le rapport des

masses !

4. Avant collision, 1’énergie mécanique du corps de masse m, était négative (question 1)
et celle du corps m, était nulle (trajectoire parabolique). L’énergie totale du systeme
était donc forcément négative avant la collision. Apres la collision et donc dissipation
d’énergie, l’énergie totale est d’autant plus négative qu’avant et la trajectoire
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elliptique des 2 corps encastrés, de masse my; + m, et de vitesse V, est donc évidente.
L’énoncé précise que la collision a lieu au périgée ou r = 1y et ou la vitesse du systeme
encastré vaut maintenant V.
Nommons alors 7y et V., la distance et la vitesse a I’apogée.
Le moment angulaire est conservé et donc, le méme a 'apogée qu’au périgée, SEULS
endroits d’une ellipse ou le vecteur direction est perpendiculaire au vecteur vitesse !
Ce qui simplifie le produit vectoriel (Z = m# AU qui devient L = mrv)
On a donc :

(my +my)rgV=>m; +mynV, oV, = :—OV

+

Exprimons a présent la conservation de 1’énergie du systeme a ’apogée et au périgée :

1 m;+m2 1 my; + m2
Z(my +my)V2 — GM ——— = = (m, + m,)VZ — GM ———
? 1 M 1 Grg/l 12 1 GM iy
T
SV =oVi-—— & SV v = VE-—— 2
e 2 Ty 2 2 A
1 7o To
:}EVZ—vS:EVE—vS-Z®V2—2v§=Vf—2v§-Z

Utilisant le fait que V, = :—OV , cela devient :
+

T, 2 T, 7o\ 2 T
V2—2v§=(—OV) — 20} = @V2l1—<—°)l=2v§[1—r—°]
+

Ty Ty Ty
T T T o 2V
@V2(1——°>(1+—°) =2v3[1——° e l+—=""2
Ty Ty Ty ., V
Ce qui nous permet de trouver la distance r, de l'apogée, en fonction des termes
demandés !
o 2v3 T
1+ 2 = ~9 S|y = 2—0
r, V? 2vj
v 1

Et aussi trouver le rapport UL demandé :
0

ry 202 V2 T
1470 _ 2V v

= > = 2:
. V 2v5 Tt

5. A la question (3), nous avions trouvé que 4 =

que1= 2 —— donc:
Vo ri+ryg
V _r 43 L
4 1+v_0 1+ 2r++r0 Yt rnty2rn r0+1+\/2r0

V T 2 + 1) — /2 T T
V2 —— 72— T+ (r +10) Iy =+ 41)— =+
Vo 2 \/2 .+ v ) 2(70 D 2 To
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s ol m
Et comme par définition : 1 = m—z, nous trouvons enfin :
1

m, To r_O
m, T, B T,
JZ(rO +1)- |27

Retour a 'énoncé

Solution 3 (réf 84 )

1. Afin de donner une réponse implacable et rigoureuse, il suffit de calculer I’énergie
totale du corps de masse m,. Le signe final donnera la nature de l'orbite (elliptique,
parabolique ou hyperbolique).

Dans notre probleme : E; = Egj, + Epot
m;v? GMm; 1 1 \* GMm; 1
_ my (b) -

=-—myv3i —m;v3 = —= m;v3
I 8 8

:>E1:

2 r, 2 2
m,y et v¢ étant évidemment positifs, —g m,v§ est négatif et donc E; < 0.

On est donc clairement dans le cas d’une orbite elliptique !

2. Le moment angulaire est conservé et donc, le méme a ’apogée qu’au périgée, SEULS
endroits d’une ellipse ou le vecteur direction est perpendiculaire au vecteur vitesse !
Ce qui simplifie le produit vectoriel (L = m# A B qui devient L = mrv).

La figure de I’énoncé implique donc obligatoirement que, tant m; que m, sont soit a
leur apogée ou a leur périgée au moment ou la situation est figée sur la figure !
On a donc :

=mnv, =

De point de vue de la conservation de ’énergie totale, on a :

my 2 GMm; myv? GMm;q1 7 X
By = 2 (vl’i) B Ty + - 2 rq - 8 M1Vo
R my (v ); GMm, 7 mv2
1 — =~ mv
_ 1rovg
Or S Vs =55,
D’ou
my ( )2 GMm, 7 ) 1 (1ryv, 2 GMr, 7,
— (v —_— = ——m —_ —_ —_— e
7 Lt " 8 1 T o\2n,) mare 80
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2 2
1 T, T, 7 1/ T
8 T4 T 8 8 \r+ Ty
2

Qui est une simple équation quadratique de type x> —8x +7 = 0 ot x = Tr_o
1+

Les racines de x? —8x + 7 = 0 sont triviales & trouver et valent x; = 7 et x; = 1, soit

encore :
T
L] 2 = 1= "+ =1
rlli ’
T T
r1,+ 7

On déduit donc que I'apogée (la plus grande distance) est ry, =1g et que le
périgée (la distance la plus courte) est rq_ = r7°
Et donc, la vitesse a I'apogée qui vaut vq ;. = %vo.
Puisque v; _ = %;Oﬁ (vu plus haut) et que 7y _ =r7° ;ona:vy_ = %vo
1,—
On note au passage que donc, la figure de 1’énoncé donnait m; a son apogée
(puisque 1, = 17).
Le périgée (% r9) + l'apogée (1) = gro représente le grand axe de l'ellipse. Des
. 4
lors, le demi grand axe a, vaut - To-
Aussi, puisque my; < M, la masse réduite g = m;.
Et finalement :

3. Pour le satellite de masse m,, c’est littéralement un copié/collé de tout ce qui a été
fait pour my; en prenant bien soin de considérer que cette fois, ’énonce précise

v, =— [ =Ty et aussi que r, = 2,

2720419 20 09 que Tz == "To

Dans notre probleme : E; = Egj, + Epot

= gy = PP S R (o) g = g g

27 2 r, - 2 °\20°% 25 r, 800 ° 25 °
175 7
=—%mvoz—§mvo

m et vZ étant évidemment positifs, —é mv3 est négatif et donc E; < 0.
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On est donc clairement dans le cas d’une orbite elliptique !
De plus, dans la figure, le rayon vecteur étant perpendiculaire au vecteur vitesse, on
est obligatoirement soit au périgée, soit a 'apogée.

4. Le moment angulaire est conservé et donc, le méme a 'apogée qu’au périgée, SEULS
endroits d’une ellipse ou le vecteur direction est perpendiculaire au vecteur vitesse !
Ce qui simplifie le produit vectoriel (Z = m# AU qui devient L = mrv).

La figure de I’énoncé implique donc obligatoirement que, tant m; que m, sont soit a
leur apogée ou a leur périgée au moment ou la situation est figée sur la figure !
On a donc :

Rappelant que m, = m (= m;)

= mrzvz ==

De point de vue de la conservation de I’énergie totale, on a :

. _m( )2 Gmm mv; GMma3s 7 5
2= \t) TR T Ty Ty, T 3
m 2 GMm 7 )
= — — [ Jp—
7 (V) ry 3200
Or S vy —2:‘::0
D’ou
m ( )2 GMm 7 5 1 (51, GMr, 7
2 ) T T T T3 ™0 T o\, ) Thary 3200

25 7o g 7o 7 25 (g g 7o 7
o2 v2(—2) —v2 (X )+—=v2=0 o= (2) - (>)+==0
32 0 <r2,i> vo (rzli T 32 \In.s e ) ' 32

2
T T
& 25 <—° ) — 32<—° >+7=
2,4+ 2,4+

Qui est une simple équation quadratique de type 25x2 —32x +7 =0 olt x = o

T2,

Les racines de 25x? —32x + 7 = 0 sont triviales a trouver et valent x; = % et x; =

1, soit encore :

T
e X =1>r1r,=r1
— *
T 7 25
° =21, =T
T2+ 25 = 7

On déduit donc que I'apogée (la plus grande distance) est 15, = 2—751‘0 et que le

périgée (la distance la plus courte) est o = 1¢
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. \ , . 7
Et donc, la vitesse a I'apogée qui vaut v, = 20 Vo-
. 51V 5
Puisque v, _ = Z% (vu plus haut) et que r,_ =1y ;ona:v,_ = 270
2,—

On note au passage que donc, la figure de I’énoncé donnait m, a son apogée.

Le périgée (ry) + Papogée (2—75 1) = %ro représente le grand axe de Dellipse. Dés
. 16

lors, le demi grand axe a, vaut ~ To-

Aussi, puisque m, <K M, la masse réduite u = m,.
Et finalement :

T =2 al 5 a3_2 . le 4 o
2= Homm = " Jom T " BN AN

5. Il apparait des questions (2) et (5) que 'apogée du corps de masse m, correspond avec
le périgée du corps de masse m,. Il y a donc potentiellement risque de collision !
Encore faut-il pour cela ... qu’il s’y rencontre en méme temps !

Calculons le rapport des périodes ;—i
64 7
T, "o v, 64
T, ,. 81 8
7V7 Vo

Autrement dit, le corps de masse m; orbite 8 fois plus vite que le corps de masse m,.

Ce qui veut dire que pendant que le corps de masse m, passe de son apogée a son

périgée (1/2 orbite),le corps de masse m; aura déja fait 4 tours complets et a ce

moment précis, ils seront censés collisionner en r; sur la figure !

6. Avant la collision (les deux masses tournent dans le méme sens !), la quantité de
mouvement du systeme est : mv, 4 + mv, _
Apres la collision, la quantité de mouvement du systeme est : 2mV
La conservation de la quantité de mouvement s’écrit :
2mV =mv, . + mv, _
Or, vy 4 = %vo et v, = %vo = 2V = %vo +§v0 =% vo D2 V= %vo

L’énergie totale du systeme encastré vaut :

1 7\ GM(2m) 49 L 79
Etor = E(Zm) (g%) - T = amvo —2myg = —amvo
—gmvg étant bien str négatif, on conclut que l'orbite du systéme encastré est

elliptique !
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Retour a 'énoncé

Solution 4 (ref 85)

1. Au point A, distant de 2R du centre de I'objet céleste, la seule force qui s’exerce sur

le vaisseau est la force de gravitation
GMm GMm

~(2R)Z  4R?
Il suffit donc d’avoir une poussée égale a cette force afin de maintenir le vaisseau

spatial immobile !

2. Au point D, le vaisseau se trouve a une distance 2R du centre de I'objet céleste tandis
qu’au point B, il se trouve a une distance R du centre. De méme, aux points B et D,
les composantes des vitesses sont purement perpendiculaires aux vecteurs positions,
ce qui simplifie I’écriture de la conservation du moment angulaire (Z =mr AV qui
devient L = mrv):

m(2R)v = mRv' = v’ = 2v

La conservation de I'énergie s’écrit quant a elle :

mv? GMm_rnV’2 GMm m(2v)> GMm _ 4mv? GMm_2 ,  GMm
2 2R 2 R 2 R 2 R "R
3V2 GM GM
= —_— = & = —_—

2 R T|VT 3R

Si la trajectoire était simplement circulaire de rayon 2R, on aurait, comme
d’habitude :
mvZ GMm GMm GM GM

F = = = = 1= =
MA=9R @Rz arz — V0

On constate que v < v,
3. De la question (2), on a calculé que v' = 2v et aussi que v = ’2—1: Il vient donc

immédiatement :
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4. Etant donné la symétrie du probleme ainsi que la loi de conservation de I'énergie, il
est évident que la vitesse au point B et celle au point C sont les mémes. De plus OB =
0OC=R
Au point A, la vitesse est nulle :

e Energie cinétique E¢p, =0

. . GMm
e Energie potentielle Ejo, = phere
. GMm
e => Energie totale : Eqo, = ——r
Au point B :
C mvi
e Energie cinétique Egjp, = -
. . GMm
e Energie potentielle Ejo, = -
— 3 . _ mvkz, GMm
e => Energie totale : Eyo¢, = "=
La conservation de I’énergie implique :
. . GMm mvi GMm GM v GM GM
= s — = — S —F—— = ——— S |V = — =V,
tota — “totg 2R 2 R 2R 2 R B R ¢

5. Soit r(t), la position du vaisseau en fonction du temps (lors de sa chute ABCD) et
choisissons r(t) positif dans la parie supérieure (cad sur le segment ABO).
Rappelons surtout le théoreme de Gauss appliqué a la gravitation, lequel démontre
que lorsqu’un objet se trouve a l'intérieur d’une sphere parfaite et homogene (méme
densité de masse partout), la force de gravitation qui s’applique a cet objet ne dépend
QUE du rayon et de la masse de la sphere qui se trouve sous ce corps. Au centre de
la sphére, ce corps est méme en flottaison (g = 0) puisqu’il est attiré (vectoriellement)
de toute part par la méme intensité de force !
Lorsque r(t) évolue, la masse de la sphere au niveau de r(t) vaut :

4
M(r() = p- 5 mlr(O)F

Alors que la masse de I'objet céleste vaut M = p - §RR3 .

D’ou :
M(r(v) [r(®l® e\’
(r )= r;g e M(r(h) =M <—R )

On met r(t) en valeur absolue car la masse ne dépend que de r(t) que celle-ci soit
positive ou négative !

De plus, lorsque le vaisseau descend de B vers O (la ou r(t) > 0) , la force d’attraction
GM(r(t))m

=20 alors

ressentie vaut F = —
GM(r(t)) m
r2(v

Et donc :
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GM m
F=— G r(t)
Mais F = ma = mi(t)
Donc :
. M m . GM
mi(t) = — G r(t) © 1) + ﬁr(t) =0

Ceci est l'équation ‘grand classique’ du type X(t) + w?x(t) =0 de loscillateur

. . . . GM ,GM
harmonique. Par identification, on a donc : w? = = et donc |w = =

La solution générale de cette équation est généralement r(t) = A cos(wt) + Bsin(wt).
Cependant, lorsque le vaisseau entre dans le tunnel au temps, disons tg, il a déja une
vitesse (vg, que l'on a calculé) et du temps s’est déja écoulé lors de son entrée puisqu’il
vient du point A ou t = 0. Il convient donc de généraliser un peu plus la solution afin
de pouvoir y intégrer des conditions initiales spécifiques en ty, moment ot ’objet entre
dans le tunnel !
La solution la plus générale possible devient donc:

r(t) = Acos w(t — tg) + Bsinw(t — tg).

e On sait quer(t=tg) =R, donc r(t=tg) =R=A cosw(0) +Bsin0 > A =R
La solution devient :
r(t) = Rcos w(t — tg) + Bsinw(t — tg).

e On sait également que I(t=tg) = —vp (attention au signe ‘moins’ : 'axe de

référence étant choisi vers le haut, la vitesse vers le bas est négative !).
r(t) = Rcosw(t — tg) + Bsinw(t — tg)
= 1(t) = —Rw sin w(t — tg) + Bw cos(t — tg)
= r(t=tB) = —Vpg =Bw1l
VB
> B=——
w
La solution particuliere devient donc :

'
r(t) = Rcosw(t—tg) — EBsin w(t—tg)

[
VB R
OrB=3E _R
w GM
R3S
D’ou

r(t) = R[cos w(t —tg) — sinw(t — tg)]

On recherche Atgc. Celui-ci, par simple symétrie, est égal a 2 fois Atgg.
Or, en O (le centre de 'objet), on sait aussi que r(t =tg) = 0!
Donc :

r(t=tg) =0 =R[cosw(tyg — tg) — sinw(ty — tg)]

Ce qui implique : cos w(tg — tg) = sin w(tg — tg)
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. TT
Or : cosx = sinx <:>X=45°=Z

11 —E —E i—E-—:E.
Donc ici : oo(to—tB)—4 et il suit : Atgg = - == 7 "

Et puisque Atgc = 2 Atgg, on a finalement :

6. Hors de la surface de l'objet céleste, utilisons le fameux principe de la conservation
de I’énergie entre le point A et le point B :
Au point A, la vitesse est nulle :
e Energie cinétique Eg,, =0

e Energie potentielle Eyo, = — G;VIRm
e => Energie totale : Eyor, = — G;/[Rm

En un point quelconque r(t) > R :
e Energie cinétique Eg,(t) = %1"2 @)

e Energie potentielle E,q(t) = — Grl\(/[tl)n
e => Energie totale : Eyor = —rz( t) — Grl\(/[tr)n
La conservation de I’énergie implique :
GMm m 2( 0 GMm
2R r(t)
(dr) GM GM
dt/ r(t)
dt _ 4
Tar s 2GM (—ix — o
( © )
dr
e dt=+

1 1
26M (5~ g)
On veut intégrer sur r allant du point A au point B, soit der = 2R ar=R.
Sur ce segment, la vitesse 1(t) est négative donc :

dr

f\/ZGM F__)

Atpp =

Ce qu’il fallait démontrer.
Notons immédiatement que par symétrie, Atcp = Atag et que donc :
R3

i
Atapep = Atap + Atge + Atep = 2Atyp + Atge = 204 + 5+ =0
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. , R3
7. Nous venons juste de démontrer que Atapcp = 2Atap +§ —
Pour évaluer

2R

AtAB =

dr

R \/ZGM (%—%)

[’énoncé nous propose le changement de variable r = 2R sin?u

De sorte que dr = 2R2 sinu cosu du = 4R sinu cosu du
Et aussi, quand :

. . 1 . 1 T
e r=R; R = 2Rsin*u (:)sm2u=5 esinu=sou=7

e r=2R; 2R = 2Rsin*u & sin? u—1(:>smu—1(:>u=721

Et de méme,

2GM(1 1)_ ZGM( 1 1)_ 5 GM 1 sin? u B
r 2R/ 2Rsin2u 2R/ 2Rsin2u 2R sin?2u/
cos?u GM [(cos?u cosu |GM
2GM (5o | = | (= = — |=
2R sinZu R \ sinZu sinu,/ R
T
7 2
dr 4R sinu cosu du R3 _
=>AtAB—f f =4 G—Mfsmzudu
\/2 GM % cosu ,@ %
4 R 4

___ sin u

Or ; sin?u=1—cos?u et cos2u = cos?u—sin?u = cos?u = cos 2u + sin®u
d’ott sinu =1 — (cos2u + sin®u) = 1 — cos 2u — sinu

et finalement : 2sin?u =1 —cos2u = sin®?u = %(1 — cos 2u)

Donc :
TT T
2 2
f‘zd—1f1 2udu=2 [ -2 Lsinzup = T4t
sin“udu =5 cos Zudu =7 [u L 22[sm u]g—8 2
T TC
4 4
TC
2
Atag = 4 RBJ du = 4 RB( 1) RY (“+1)
= = R = —_ - — = —_ =
AB Gﬂsmuu VACEE GM \2
4
Et :

Atyecn = 20tse 4 At = 2 |0 (“+1)+1T R _ R (3“+
ABCD ™ “7CAB BC™* IGM \2 2 JGM~ JGM \ 2
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Retour a 'énoncé

Solution 5 (réf 86)

1. L’énoncé précise bien que la trajectoire du corps de masse m; est parabolique. Le
cours théorique nous indique donc que son énergie totale est nulle ! (Pour rappel :

E;ot < 0 pour une trajectoire elliptique, E;,; = 0 pour une trajectoire parabolique,
E_tot > 0 pour une trajectoire hyperbolique).
Or I’énergie totale du corps de masse m, vaut Exgr = Ecin + Epot

, 2GM 2GM
(=4 Vi = (=1 Ve =
2 o o Io

m;v? GMm,

= Eror =

2. Dans le cadre du MCU, le corps de masse m, subit une accélération centripéte (2%
2

loi de Newton) dirigée vers le centre de I'objet céleste : F = mya = % Or, dans le
0

repere de Frenet, cette force n’est autre que la force de gravitation dirigée également
GMmz

vers le centre de l'objet céleste F = — Donc :
0

muvs Mm, , GM GM

F = = G > = 772 = —_— 172 = D —

To To To To

3. Calculons la période :

X Mcu 21T, 2nry 21, ) oo_, r
2Tt T, 27y, GM °\GM GM

4. L’énoncé précise que my; = m et m, = mv 2. Exprimons la conservation de la quantité
de mouvement sachant que, avant la collision, les quantités de mouvement des corps
1 et 2, sont évidemment opposées vu qu’ils avancent en directions opposées. Et

nommons V, la vitesse du systeme encastré apres collision :

2GM GM
—mV2| |— | =0
Iy To

(my + my)V =myv, —myv, & (m + m\/E)V =m

=>V=0
Donc, apres la collision, le systeme est « temporairement immobile », le temps de se
remettre en mouvement, attiré par la gravitation de 1'objet céleste !
5. L’énergie mécanique dissipée n’est autre que la différence d’énergie mécanique avant
la collision et apres la collision. Or, I’énergie potentielle avant et apres collision, est la
méme vu que le seul parametre influant sur 1’énergie potentielle est la distance juste

avant et juste apres et celle-ci ne varie pas ! Il ne reste donc plus qu’a calculer la
différence d’énergie cinétique :
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totapres - EtOtavant = ECinaprés - ECinavant
2 2
(m+mV2)V? [m{| [2GM\ V2m|[ [GM
= o +
2 2 I 2 Ty
V=0
= — (1 + 717) C;—M qui est bien négatif (dissipation d’énergie !)
0
6. On va utiliser le principe de la conservation de I’énergie en calculant 1’énergie

totale au moment de la collision et, vu sa conservation, 1’égaler a 'énergie totale au
moment de toucher le sol ! Aussi, dés que la collision a eu lieu, la seule et unique force
qui sera en jeu est la force gravitationnelle qui va faire chuter tout le systeme vers I'objet
céleste de masse M.

Une fois la collision faite, la masse du systeme vaut (m; + m,) et son énergie potentielle

vaut E = —GM . @tma) plus, on a calculé ci-dessus que l’énergie cinétique

Pcollision T'o
(my+my)V?

juste apres la collision vaut . Donc, I'énergie TOTALE, qui d’ailleurs sera

conservée tout au long de la chute vaut :

(my +my) V? (m; +my)
Eror = Ecin + Epot = — s GM - —=
)
Au moment de toucher le sol a la vitesse recherchée, notée V,, on a :
2
i ECinsol = (m1+;n2)vo
gGM
d Epotsol = —(m; + my) R
(m;+m3)V3 GM

* Ertor = Ecing,, T Epoty, = % — (my +my)—
D’ou :

(m1 + mz) VZ (m1 + mz) (m1 + mz)VOZ GM

———-GM- = - + —

2 o 2 (my +mz) =5
v=o GM V& GM
= - —=—=—-—
o 2 R
V. 2GM (1 R)
= = —_— —_—
0 R | 4))

7. Nous avons calculé qu’apres la collision, le systeme encastré a une vitesse nulle. Son

énergie cinétique est donc nulle, & ce moment tres précis. Son énergie potentielle vaut
GM p . . GM
% et donc, son énergie totale vaut aussi Eyoy = —%
0 0
Or, a tout moment de la chute :
_ (my+mp) v _ (my+my) (g)z
Ecin(t) - 5 - 5 dt

GM
b Epot(t) = _(ml + mz)@

quant a elle —

On peut donc écrire qu’a tout moment de la chute :
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B (m; + m,) 7dr\? GM (m1 + m,)GM
Etor = Ecin(t) + Epot(t) And T (a) - ( 2) (t) I

@(dr)z_zGM SGM (1 1)
dt/  “r@) ry r(t) r

Piege ! 1l est évident que lorsque le temps t s’écoule, r(t) diminue (suite a la chute) et

dr , , . N
donc 5 ost forcément négatif. Donc, en passant a la

veiller a considérer que la partie droite de ’équation sera négative, donc :

D’ou :

2GM ——a

t R dr 1 (R dr
0 Ig 1 \/ZGM I'o (l _ l)
r I,
Heureusement ... ’énoncé nous aide en conseillant une substitution : r = rq cos? x.
Dans ce cas : dr = —2r, cos(x) sin(x) dx
Et aussi, quand
® r=ry; ry=rycos?(x) = x=arccos(1) =

e r=R; R=rycos?(x) = x=

— j _ 21 f cos(x) sin(x) dx
V2GM r(,\/(%_rl) V2GM J(rocoﬁ—%)
B arccos\/70 cos(x) sin(x) dx B arccos( cos(x) sin(x) dx
\/ZG_MJ \/ZGMJ

( 1 cos? x > (1 — Cc0s? X )
I COSZX Iy COS2 Iy COS? X

ALK \/_ arccos cos(x) sin(x)dx _ 2rp - \/— arccos cos(x) sin(x) dx
B V2GM j f sm(x)

st(X) ~ V2GM i
coszx cos(x)
2 Iy - \/— arccosJ_0
~ V2GM f

Or, cos(2x) = cos?(x) — sin?(x) = cos?(x) — (1 — cos?(x)) = 2 cos?(x) — 1

cos?(x) dx

1 1
2 =_ 1
= COS“X = 2+2cos(2x)
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2 Iy - \/_ farccos \/:

V2GM

2 ry - \/_ Jarccos f 1

—+ cos(2x) dx
V2GM

R
arccos ’
To

cos?(x) dx =

R

2 rO ]arCCOS r(]
ZGM 2

2 r(3) 1 R 1
= —arccos [—+ —sin2 | arccos
ro 4
R 4 1 ) R
= arccos |—+ —=sin arccos |[—
V2GM rp 2 Io
3
1/"0 R 1 R
= |At = arccos |—+—sin2 | arccos |—
ro 2 ro

V2GM

On note au passage que si ro = R, At =0, ce qui est normal et .. réconfortant apres ce

11
E E[stx]

S|

[\)

calcul !
Si vous aimez la trigonométrie, vous pouvez aller un cran plus loin, sachant que :

e sin2x = 2sinxcosx et aussi,

e sin(arcos x) = V1 —x?2

Alors :sin 2 (arccos \/E) = 2sin ( arccos F) cos (arccos \/7 \/7 /1 - —
Io Ig I'o I'o
D’ou :
/ 3
At 0 R + R 1 R
= arccos |— — - —
Vv2GM I Io o

Retour a 'énoncé

Solution 6 (réf 128)

GMm,
27 ou M est

Partons de la formule générale F =

la masse de la plaque. Mais ... la distance de mg a la

plaque varie selon 'endroit considéré sur la plaque !
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Il faut donc procéder par « petits morceaux » et ensuite intégrer !

Soit un point (x,y) sur la plaque et petit élément infinitésimal de surface dx - dy centré
sur ce point de la plaque.

Vu que p = %, alors pour ce petit élément, onadm =pdV =p-7-dx-dy.

De plus, la distance de mg a (x,y) est : / x2 + y2 + zZ.

De sorte qu’au final, un petit élément de Force de gravitation dF vaut :
Gdm-my , Gp-t-dx-dy-my _,
r= r

dF =
x2 4+ y2 +2z¢ x2 4+ y2 +z¢

Or, vu la symétrie du probleme, quel que soit I’endroit ou se trouve 1’élément dm, il y
aura un autre élément dm symétrique par rapport au point (0,0) (symétrie dite centrale)
qui annulera les composantes x et y de la force ! Ne reste donc en fait QUE les

composantes selon z ! Or comme on le voit sur la figure, dF, = dF - cos6. Donc,
_Gp-t-dx-dy-mg < Zo )

x% +y2%+ 2z [x2+y2 + 22

dF, = dF - cos0 = dF - (Zr—")

Et donc, il reste a intégrer sur toute la plaque :

F=FZ=G,D'T'm0'ZOJf
(x?

Qu’on demande de ne pas calculer ...

dx - dy

3
+y2 +z2)2

Retour a 'énoncé

Solution 7 (réf 129)

On fait référence a l'exercice référence 128 (ce

corrigé) ol on a obtenu

dx - dy
F=Gp-T-m0-zoﬂ 3
(x2+y2+23)2

En coordonnées polaires, 1’élément de surface
n’est plus dx - dy, mais dr - r df

La distance de my a I’élément infinitésimal de la plaque n’est plus 4/ x2 + y2 + z& mais
simplement r2 + zZ. !!Attention, le ‘v’ dans notre probléme n’est plus la distance de m,
a dm mais simplement la distance de (0,0) a dm.

De plus, r varie de 0 a R et 6 varie de 0 a 2m, afin de couvrir toute la plaque circulaire.
On a donc :
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R
dx - dy r-dr-df
F Gme0Z0 3—Gme0Z0 - a2
(x2 +y2 +z2)2 o (r2+ 22)2
R
dr
=Gp-T-Mmy- Zode f——Gp T-My-2Zp- nJ
0 (r2 +z§)2 o (r? +Zz)2
Effectuons le changement de variable :
u=1r>+z 2du=d@? =2r-dr :>r-dr—d—u
= 2 = = =
Dans ce cas, lorsque 7 = 0 = u = z& et lorsque r = R = u = R? + z2
La nouvelle intégrale va donc aller de zZ a R? + z2.
D’ou :
R R2+Zo
r-dr du 1 R® +ZO 1
= A rEe
o (r2 4222 Zg 2 (u)2 R* + z;
Tz JRZ JRZ+ 22 Zol
Et donc, finalement,
R
r-dr 1 1
F=Gp-t-my-2zy-2m f—3=Gp-r-m0-zo-21t —_———
o (r2+2z2)2 % |gigz
. 1 1 1 1 1
Dans le cas ou R > z,, alors \/R2—+z§~Eet Z—JRZ—H& ~
De sorte que si R > z,,
1
F=Gp-1-my-2zy 21 (Z—)sz-t-mO-Zn
0
Retour a ’énoncé
Solution 8 (réf 130)
5 .= _ GMm ) . P A w
a) On a d'une part : F = 5 - ) @ md— — = —
Ces deux forces étant égales on a : — zm =mr= o —— = d
r dar r dar

Lo GM
Qu’on peut réécrire : —r—zdr =vdv
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Soit v la vitesse initiale lorsque 7 = R et vy, la vitesse finale a une distance r quelconque.

On a alors, en intégrant :

vf

f d —fr GMd (:)1(2 2) = GM[ 1]r—GM<1 1)
vdv = S dr o5 (vf-v?) = o= e

v R

Si la vitesse de lancement est le minimum pour atteindre r, cela veut dire qu’une fois r
atteint, la vitesse en ce point vy, est nulle ; Donc,

12—GM(1 1)«: - ZGM<1 1)
2V TG TR v= R r

b) En d’autres termes, on demande quelle est cette vitesse minimum pour que I'objet

. < 1y N ) 1
uisse aller a l'infini, cad, r = 0. Si r = 0 alors, = = 0 et
) b ) r

2GM
v= | ——

R

qu’on appelle la vitesse de libération

Retour a 'énoncé

Solution 9 (réf 131)

GMm dv dv dr dv

a) On a d’une part : F = — et dautre part : F=ma=m—=m—:-—= —

) b r2 p dt dr dt dr
, , GMm dv GM dv
Ces deux forces étant égales on a : — =mv— & ——=v—
r2 dr r2 dr

o GM
Qu’on peut réécrire : —r—zdr =vdv
Soit vy = 0 la vitesse initiale lorsque r = 1y et v, la vitesse a une distance r quelconque.

On a alors, en intégrant :
v T
1 1 1
jvdv= J——dr o - v?2=—-GM [—— = GM(———)
T 2 r o1
0 L0

=>v(r) = jZGM (%—r—l()
2GM

b) Siry est tres grand, alors rltend vers 0 et donc v(Ry) = —
0 T

Mais on sait que gy = i—lzw = GM = gyR? et alors :
T

,ZGM 29, R2
v(Rp) = R, = I;T L= V29oRt
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Retour a 'énoncé

Solution 10 (ref 132)

M «—dF
—e — | x
X0 X X x+dx Xg + L

Il s’agit d'une simple application de F =

L’idée est de calculer dF pour un élément de tige dx et ensuite d’intégrer sur toute la
longueur de la tige. Ici,
M dm
X2
SR T . m am m .
Or, la densité linéaire de la tige vaut p = T donc, p = - > dm=pdx = ?dx. Il suit :

dF =G

dF_GMdm_GMmdx
T x2 7 Lx?

Qu’on integre sur la longueur, soit de xy a xo + L :

X0 +L X0 +L

Mmdx GMm dx _ GMm 1%t GMm /1 1
Jare Tt om Tt sy sy
L x? L \xy xo+L
_ GMm
_xo(x0+L)

e Si toute la masse était concentrée au milieu de la tige, on aurait eu

simplement :
GMm
F = 2
(x0+3)
e Sixg > L, on a dans les deux cas
_ GMm
=

Sans surprise, puisqu’a grande distance, la barre aurait été percue comme un objet
ponctuel de masse m située a une distance x.

Retour a ’énoncé

Solution 11 (réf 133)
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On cherche comment varie g lorsqu’on s’éloigne (mais pas trop !) de la surface terrestre.

T donne

On sait que gr =

g a une altitude r = RT + h ou h est la hauteur au-dessus de la surface terrestre.

GMy d d (GMy GMy
gr(r) = = EQT(T) =9 ( 2 ) =-2 3
Au niveau de la surface terrestre, r = Ry et donc
d ) = —2 GMy 667259 X 1071 . 5,975 x 102%*  _308x10- (m)
ar 9TV T TR T (6,371 23 x 106 ) - 2)/m

Retour a 'énoncé

Solution 12 (réf 134)

Xo dF,

Note : Cet exercice est tres similaire a la référence 129.

On calcule d’abord la force exercée par un élément de masse dm:

Mdm M dm
dF = G =G >
r? R? + x§

Par symétrie centrale par rapport a O, on voit que tout élément dm aura un élément

symétrique tel que les composantes de F selon y et z s’annulent. Il restera donc les
composantes selon x.
X Mdm /x M dm X
;= aF cos(0) = dF (2) = 6 (2) = 6 s (s

RZ2+x% \r RZ + x2 /R2+x§

M dm x,

3
(R% + x2)2

M dm x, M x, M mx,
:szde=JG =G Jdm G——————
(R% +x2)2 (R + x2)2 (R% + x2)2

Si toute la masse de 'anneau était concentrée au centre, ce serait tout simplement



Gravitation et lois de Kepler Ceinture Noire

M m x, M m x, Mm
F=G =G — =0—
(x2)2 Xo Xo
Et si xy > R, on aurait
Mmxy x»R Mmx, M m x, Mm
F = G—E ~ 3 = x3 = xz
(R? + x§)2 (x5)2 0 0

Prévisible puisqu’a grande distance, 'anneau apparait comme un objet ponctuel, donc,
dont la masse apparait concentrée au centre. Dans le calcul de départ, cela reviendrait a
considérer directement que r = xy et que R = 0 ...

Retour a 'énoncé

Solution 13 (réf 135)

a) La premiere chose a savoir (démontré dans ma partie
théorique) est qu’a Dintérieur d’une coquille
sphérique, le champ gravitationnel ressenti par la

masse m est nul. Alors, certes, la plus grande sphere de

masse M n’est pas vide et n’est pas une coquille mais ... peut
étre considéré comme un empilement infini de coquilles,
chacune tres mince et donc, le résultat est le méme : la masse m ne va ressentir aucun
champ gravitationnel dii a ce qui se trouve a un rayon plus grand que R !

GM'm
Et donc, F,, = —
=22 _L’ K—M—’ I = 13 (RN
Orap_V_gnRs—gnrsﬁRs—rBﬁM—M(R)’dOu'
GM'm GmMr3 GmMr3> GmMr
mTop2 T g2 (E) ~T,2R3 ~ R3

b) Par simple application du résultat obtenu en a), on a :

F(r:ﬁ) GmM (%) _ GMm

2

R3 2R?
_FG) _om

Accessoirement, g (R)

2) T m 272

Retour a ’énoncé

Solution 14 (réf 136)
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Soit Fgy, la force gravitationnelle exercée par la boule du w’

y
-
haut et Fgp, la force gravitationnelle exercée par la boule du s Fon
bas. . (i;;ﬁi 0 L
s . . . 0 m
Par symétrie, on voit bien que seules les composantes selon  , T
GB
X vont entrer en compte puisque selon Y, (Fgy)y et (Fgpy)y L
seront opposées et vont s’annuler. -
GMm GMm GMm T s .
Or (Fgy)y = Fgy cos® = ————cos@ = —5—cosf = — S——— et évidemment,
r L LR L T
1 2
GMm 71

méme chose pour la boule du bas : (Fgg), = — o \/ﬁ
Ty +T'2

La contribution de la force gravitationnelle exercée par les deux boules sur la masse m

est donc la somme des deux :
GMmr,

3
(T‘12 + 7'22)5

Note : le signe ‘moins’ indique simplement que la force est vers la gauche...

GMm 1 6,67 x 107 - 2-10x 107 0,25 1
SFh=-2—mg=-2- = —38x 107N

(r12 + rZZ)% \/(0,252 + 0,502)3

Retour a 'énoncé

Solution 15 (réf 137)

L’idée est de calculer I'accélération gravitationnelle a la surface puis de calculer la force
centrifuge a cette méme surface. La période obtenue en égalant les deux forces est la
période limite telle qu’au-dessus, la matiere serait éjectée.

L’accélération gravitationnelle a la surface est donnée par la formule habituelle :
GM,
gn = RZ

Or,p=% $M=pV=p§7TR3.
GM, GpsﬂRs
Rz~ R?

D’autre part, la force centrifuge qui tend a éjecter une particule a la surface de I’étoile

D’ou, g, = = %nG PR
v? 1t e . v?
est : F, =ma = m—. L’accélération centrifuge est =
Et donc, égaler les deux permet de trouver quand une particule est en équilibre entre la
force qui l'attire vers le centre et la force qui tend a 1’éjecter.
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=2 =ZaGpR
R _37F
Or, pour une rotation, v = % = ?. D’ou :
2mR\?
v? 4GR (T) 4GR 4 2 R* 4GR T Gp
— == S = - =3 = o —=—
R _3"F R 3°F Rtz 30 F 2- 3

3m
>T= |—
Gp
. s . 3 3 _
Ce qui donne numériquement, 7= |[—= |————=1%x10"3s=1ms
Gp 6,67x10~11.1017

Autrement dit, dés qu'une étoile & neutrons de densité 107 kg/m3 tourne plus
rapidement que 1000 fois par seconde, elle peut commencer a éjecter de la matiere.

Retour a 'énoncé

Solution 16 (réf 138)

On sait que pour une masse m, le poids est donné par F; =mgy.

GM GMT ., «
Or, gr(h) = (RT+rT1)2 et go = (RT)T2 d’ou :
P GMrm GMm GMm gom
r+h) h 5 h h
(Rr(1+ R—T)) R3(1+ R_T) (1+ R_T)
Et donc,
Fy Jo B 9,81 5
= 2= 7 m/s
") (1 o)
Ry (6370000
Ce qui donne, avec un tableur
Excel.
Dans le cas ou h < Ry, h/Ry tend
vers 0 et on peut appliquer un
développement de Taylor a
W2
(1 + R_T)
Pour faciliter I’écriture, on pose
temporairement L = x. On veut donc développer —_ en série de Taylor.

RT (1+X)2
Rappel : au premier ordre (!) le développement de Taylor de f(x) en 0 vaut :
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f(x)=f(0)+f'0)x (+fT((Dx2 + )

Or,

« F@W=1+025f0)=1

e ) =-200+0)7 >0 =-
Dongc, f(x) = 1—2x

. h 1 h
Revenant a —=x,ona: ——=1—-2—
RT (1+x)2 RT

Fg _ Jdo h<iRT _ i
Et donc, = = gy (1 2 Rr)

Retour a 'énoncé

Solution 17 (réf 139)

GMT

—(R T et go = o )zdou :

a) On sait que gr(h) =

2 h)Z_R%

GMy GM, GM;  GMy (1 h >‘2
h 2
(Rr(1+ R_T)) R3(1+ T

9" = Re+h)2

Utilisons le développement du binome :
-1 1 -2 .2
(a+x)"=a"*"+na" x+§n(n—1)a" X4

onx?<a? Ici,a=1,x=-,n=-2.

gT=G;ZT(1+R£T)_2=G£T[1 2O coenm (i) + |

GMr [ 2h ]

RZ " R

xl:

GMt
R% =90

Si h = 0, on obtient bien : gy =

b)

GMr _ 6,67x10711.5975x102*
(R¢+h)2 (6,37123%x106+10000)2

1) En utilisant gq = IV; ,onagr = = 9,791 m/s?
T

2) En utilisant Papproximation trouvée en a), on obtient :
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GM; [ 2h N ] _ 6,67 x 1075975 x 10** . 20000 N
917 "2 R - (6,37123 x 106)2 6,37123 x 106
= 9,513 m/s?

Ce qui fait une différence d’un peu moins de 3%

c¢) Utilisant le résultat obtenu en a), on a :

GM, [ 2h ] _667x10711-735x10% 1 2-100
9= g2 R, - (1,74 x 106)2 1,74 x 106
=1,61906 m/s?

La valeur a la surface de la Lune est :

GM, 6,67 x 10711 - 7,35 x 1022

= =1,61925 2
R? (1,74 x 105)2 m/s

g =

1,61925-1,61906

~ 0, z - 1: . |
1,61925 0,01% lequel est négligeable en pratique !

L’écart est donc de

Retour a ’énoncé

Solution 18 (réf 140)

Considérons un anneau situé entre le
rayon r et r + dr.
Sa largeur est dr.Son épaisseur est
Kr et sa circonférence est 2mr .
De sorte que son élément de volume
est :

dV = 2nr - Kr -dr = 2nK r? dr
Soit p = M/V, alors la masse dm de

I’élément d’anneau est :

dm=pdV =p2nKr?dr
Pour des raisons de symétries, seules les composantes de F selon 'axe X vont entrer en
ligne de compte. Et donc,
X0 _ GMdm X0 _ GM xo (p2nKr?dr)

dE, = dF cos@ = dF =
x x& + 12

1 1 3
(x2 +12)2 (x2 +12)2 (xZ +712)2

R

R
GM x, p 2 mK 2 dr r?dr
=>F=dex=f - =26Mx0p7tKJ—3
o (x2 +712)2 o (x2+712)2
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, . R r?dr
Concentrons-nous sur la résolution de fo —
(xg+12)2
Soit vous disposez d’une table d’intégrales ou d’un logiciel de calcul analytique, soit on

y va « a l'ancienne » &

Sur la figure on voit que : xL = tan(0) = effectuons le changement de variable :
0

(sinBcosB + sinBsinh)

r =xotan(0) = dr = x, = Xo~ do = x,sec? do

cos? 6 0s%6
L’intégrale se réécrit alors :
R

R
f r?dr J‘ x2 tan?(0) x, sec? d@

3 3
o (x2+712)2 3 (x3+xftan?(0))z

Or,
sin? @ 1
x§ + x§ tan® 6 = x§ (1 = 0) = x§ <—cosz 9> = x§ sec? 6
R R
s f x5 tan®(0) xq sec® do f x2 tan?(0) x, sec?6 db
3 = 3
o (x3+x¢tan?(0))z (xZsec?0)z
R R R
3 j x3 tan?(9) sec?0 do 3 j tan®(0) df f sin?(0) cos 0 dO
B x5 sec3 6 B secd cos? 6
0 0 0
R R R R
sin?(6)do 1 — cos?(6)deo 1
=j =J =f de—fcosé?dé?
cos 6 cos 6 cos 0
0 0 0 0
Or,
R R R

(secH +tan @)

1
do = 0do = 0 dé
f cos 6 f Sec f Sec (secB +tan @)
0 0 0

Mais ... % (secO + tan ) = sec O tanf + sec® § = secH (tan 6 + sec )

Ce qui est exactement le numérateur !

L d
On se retrouve donc avec une intégrale de type f;u = In|u| avec u = sec6 + tan 6

Et donc, ici, on a :

R
1
f dO = In|secH + tan @ |
cos 6

0

Et donc,

R R
1
f do — f cos 8dA = [In|secd + tan 8 |]¥ — [sin O]
cos 0

0 0

1 Vx5 + 12 r _ r
secH = = ; tanf = — ;sinf = ——
cos 6@ X X xZ +r2
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Il faut donc calculer :
Vx§ +1r?

[ln
Xo

Vx5 + R? N R

Al
Xol],, x5 +12,
R

—(In() -0) - ((—=)

=ln —
Xo Xo x& + R?
| R+ /x5 + R? R
= |n —
Xo Vx& + R?

R+ /x§+R2

X0

On obtient (enfin !) :

R
rédr
[ro
o (x2+712)2

Le terme étant forcément positif, on peut supprimer la valeur absolue !

R+ /x5 +R?

Xo

R

Jx§ + R?

Et remettant les constantes devant l'intégrale, on a :

R
F=2GM Kf rdr 2GM K(l <R+ x§+R2> il )
= XopTC —= Xo P TC n e
S (x2+712)2 Xo Jx& + R?
Au niveau des unités, on a :
[6] =2 [M]=kg : [xo) =m ; [p] =22 : [K] = constante
kg m
2
=> [F] = A}’{ZZ kg -m- % = N . Les unités sont donc bien respectées !

Retour a 'énoncé

Solution 19 (réf 141) +L1/2
y+ady dm
a) Il s’agit d’une application de g r
F = —% adapté a une tige. i aF
L’idée est de calculer dF pour un élément N % éééx' o

de tige dy et ensuite d’'intégrer sur toute

la longueur de la tige. Ici,
my dM

dF = G —>

—L/2

Avec % = x5 + y? /
s e . M aM M .

Or, la densité linéaire de la tige vaut A = > donc, 1 = e =>dM =21dy = ?dy. 11 suit :
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modM myM dy
r2 LG +y?)
qu’on integrera sur la longueur, soit de —L/2 a +L/2.

dF =G

D’autre part, par symétrie miroir par rapport a O, on voit que tout élément dm aura un
élément symétrique (de lautre coté de 0), tel que les composantes de F selon y
s’annulent. Il restera donc les composantes selon x.

Xo moM dy X moM dy ail
dF, = dF cos(0) = dF (—) =G —5_—< ()=
= areos(0) = ar () = 6 s () = 6rgs,m (s
_ mOMdey
b3
L (x%+y?)2
Et donc,
L2 L/2
meM x, d GmoMx d
F:deszooyazoLOf —
—ijz L(x+y?)2 ~iy2 (x§ +¥?)?

2 d , . .
—= __ dont lastuce de résolution est un grand classique

(x3+y2)2

(bien que pas facile & deviner si on ne I’a pas vu auparavant ..) en posant :

L/
Concentrons-nous sur J L2

sinf cosOcosO + sinfBsind 1 )
y = xo tanf = x, 059:>dy=x0 s d9=xom=xosec 6 do
dy X, sec? 6 db xo sec? 6 db sec? d@
> f e f e f i f 3
(x% + y?)2 (x% + x4 tan? 9)2 x5 (1 + tan? 6)2 ) ( 1 )2
0 \cos?6

jsecze dg 1Jsec29 dé 1 (1d6

3 sec? 6 x5 ) sec 0

) 372
x§ (sec? 0)2 0

1 1
= —Zf cost df = — sinb
Xo Xo

Or, on voit sur la figure que r sinf =y = sinf = Y=
(x8+¥2)?

L

L/2 2

dy 1 y 1 L

L
T & PR x| I?
Xo +Vy°)2| L L 2 2 2 L
e T (e ) )
Gmy

% devant l'intégrale, on obtient finalement :

2 2y X6
_ij2 (xg +y?%)2 0

Remettant les constantes

_ G"7l()MX() GmOM

L
Cow+ ) x ()
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b) Utilisons (comme suggéré dans 1'énoncé) A = % >M=21L

GmoM GmyAL

=>F= 2: 2
wB+(5) w8+ ()

Faisons tendre L vers 'infini.

L L
I}im 2=L11 zleimf_Z
—00 L —00 L -0 L
2, (L el
<+ (3) 3) 2
D’ou, lorsque L — o
2 Gmol

Retour a 'énoncé

Solution 20 (réf 142)

Appelons my, la masse de Sirius A et mg, la masse de Sirius B. Les deux étoiles orbitent
autour de leur barycentre O avec 1y, la distance de Sirius A a0 et rg, la distance de
Sirius B a 0.

a) Considérons d’abord les forces sur my . Alors :

F Gmymg
A —_— e ——
(14 +15)?
2 2 2
mav, Mmy (27T 4 ATT“MAT 4
Et comme my tourne autour de 0: F,, = —4 = —( ) = 5
TA TA TA TA

Considérons ensuite les forces sur mg . Alors :
Gmymg

F -
5 (r4 +15)?

2 2 2
mpv mp (2nrg 4m“mprp
Et comme mg tourne autour de O: F.z = B = —( ) = 5
r r T T,
B B B B
On voit que FA = F37 or FA = FCA et FB = FCB dOHC FCA = FCB
s AmPmury  ATPMmprg TA=Tg o Ta_Ms
2 - 2 A'A — HtBlB -
LA ’ s’ . T'A mB
L’énoncé précise que 15 = 214, donc =——=— =>mg =2 my
2714 mgy
Gmympg 4mPmgry Gmg 4m2ry
b) Comme FA = FCA : = 2 = > (1)
(ra+rp)? T4 (ratrp)? Tj
R Gmympg am’mprg Gmy am’rg
De méme : Fg = Fp : = = (2)

" (ra+rp)? TE (ra+rp)? T2
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Sommons membre & membre (1) et (2) :
Gmg N Gm,  4n’ry N 4121y
(ra+1p)?2 (u+1)2 T} Ts

TAo=Tp=T GmB n GmA . 47T2TA 47T2TB
(ra +1)% (14 +15)2 -T2 T?

G (my +mp)  Am?(ry +1p)
(rg +15)2 T?

(ra+rp)® Gimy+mp)
f—3 =

T? 4 T2
3
. 412 (ra+rg)3 412 (2,99%x1012) 30
Dou my + mg = = =6,34x10°"k
A B G T2 6,67x10~11. (50-365-24-3600)2 ! 9

Or, (a) :mg=2my =3my=634x10%kg =>m, =2,1x103kg
Et donc mg = 2my, = 4,2 X 103%kg

Retour a 'énoncé

Solution 21 (réf 143)

MM

>
Ts

D’une part, la force gravitationnelle du systeme Terre — satellite est : F; = G

D’autre part, le satellite orbite sur une trajectoire circulaire autour de la Terre. Il existe
2

donc une force centripete :F, = M :—
N

Les deux forces s’équilibrant, on a :

X « . . , . \
Or, v= - avec ici @ x, la circonférence de l'orbite cad 2mry; parcourue en un temps T,

cette période que 'on cherche
2,.2

Et donc, v == = T oy 2 = “—er Sp=2h 2 _ Ty (nous y reviendrons)
t T T T T2 T
2,2 2..3 3
Donc, G&zvz,{:G&:”_eriTzz‘}”_rsitzzn Is —p T /rs3
Ts Ts T G Mt G Mt G Mt
27 ron 3 o | (3844 x 108\’
= (—) =3,15x 10~ ——— | secondes
V6,67 x 1011 - 5975 x 1024 4 * 2 2

= 839334 s =9,71 jours
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m 3,844x108

r
Revenant sur v=—% onav =
T 839334

= 1438 m/s

Retour a 'énoncé

Solution 22 (réf 144)

Vu la symétrie de la position des masses de part et d’autre o

de 0, les composantes de g selon l'axe Y s’annulent (la ’"
composante selon Y de 'une des masses annule celle créée par k
l'autre masse).

Restent donc les composantes selon 'axe X, dirigées dans le

méme sens (voir figure).
Gm
2"

De maniere générale, g,, =

Ici, g = 2 gpcosO (le 2’ car chacune des 2 masses apporte sa contribution).
D’ou,
G

X
g= ngcosezzr—z-;z

ZGmx_ 2Gmx

3
(x2 + d2)2

r3

Retour a 'énoncé

Solution 23 (réf )

Retour a 'énoncé

Solution 24 (réf )

Retour a ’énoncé

Solution 25 (réf )

Retour a ’énoncé
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Solution 26 (ref )

Retour a I'énoncé

Solution 27 (réf )

Retour a 'énoncé

Solution 28 (réf )

Retour a I'énoncé

Solution 29 (réf )

Retour a I'énoncé

Solution 30 (réf )

Retour a I'énoncé

Solution 31 (réf)

Retour a I'énoncé

Solution 32 (réf )

Ceinture Noire
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Retour a I'énoncé

Solution 33 (réf )

Retour a 'énoncé

Solution 34 (réf )

Retour a 'énoncé

Solution 35 (réf )

Retour a I'énoncé

Solution 36 (réf )

Retour a I'énoncé

Solution 37 (réf )

Retour a 'énoncé

Solution 38 (réf )

Retour a 'énoncé

Ceinture Noire
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Solution 39 (réf )

Retour a 'énoncé

Solution 40 (réf )

Retour a I'énoncé

Solution 41 (ref )

Retour a I’énoncé

Solution 42 (ref )

Retour a I'énoncé

Solution 43 (ref )

Retour a I'énoncé

Ceinture Noire



